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The author here considers the stability of the rotation of a solid body 

with a cavity filled entirely or partially (containing a bubble) with an 
ideal imcompressible homogeneous liquid. 

Zhukovskii gave the general solution of the problem on the motion of 

a solid body with cavities filled completely with an imcompressible 

liquid [ 1 I . On the basis of Zhukovskii’s results, Chetaev [ 2 I solved 

the precisely stated problem on the stability of the rotational motion 

of a solid body with cavities filled completely with an ideal liquid in 

vortexless motion. 

Along with the exact methods. there were developed approximate pro- 

cedures [3 1 for solving the problem on the motion of a solid body with 

liquid filled cavities. 

Sobolev [4 1 applied the methods of functional analysis to the linear- 

ly formulated problem on the stability of the rotational motion of a body 

with cavities filled completely with an ideal liquid. The work of Krein 

[5 1 is devoted to the application of Sobolev’s method to the solution 

of the problem on the motion of a body with liquid filled cavities. 

On the other hand, the theory of the motion of a body with cavities 

that are not completely filled with a liquid has as yet not been suffi- 

ciently developed. Researches along this line deal mainly with the problem 

of small oscillations around the equilibrium position of the vessel with 
the liquid. This topic was considered in the works of G.E. Pavlenko. L.N. 

Stretenskii, D.E. Okhotsimskii, B.I. Rabinovich, N.N. Moiseev, and G.S. 

Narimanov. 

Of special importance in research problems on the stability of solid 

bodies are certain works on the study of the stability of the forms of 
relative equilibrium of a rotating liquid, in particular, the works of 

Liapunov [ 6,~ 1 and Poincarg, [ 8 1. In his work [ 8 1, Poincar& studied the 
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small oscillations of a free liquid subject to Newton’s law of gravita- 

tion. He considered the oscillations of the liquid in the neighborhood of 

its relative equilibrium position, and obtained certain results on the 

stability of figures of equilibrium. Poincark confined his considerations 

to the linear equations of the first approximation, which he obtained by 

neglecting in the differential equations of the problem certain terms 

that he assumed to be small. Since the validity of the replacements of 

the original equations of the problem by linear equations cannot be proved, 

and since such a replacement simply substitutes for the original problem a 

new one whose solution may have nothing in common with the original one, 

it was pointed out by Liapunov [7 ] that the results obtained by Poincark 

cannot be considered as having been rigorously established. 

Liapunov revealed the difficulties which one meets in the study of the 

stability of continuous media; thus, in particular, there can occur in a 

liquid extensions which are large in linear dimensions but small in 

volume, are threadlike or laminar and contain little energy. In this con- 

nection it was shown by Liapunov that one is not justified in drawing con- 

clusions on the basis of analogies between the case of a finite number of 

degrees of freedom and the case of motion of continuous media. 

As is well known, the general problem on the stability of motion of 

continuous media has not been formulated up to the present time; the 
attempts made in the literature to state this problem as a problem on the 

stability with a finite number of degrees of freedom cannot be considered 

to have been successful. 

In the present work there is chosen a different line of approach whose 

principal idea can be described as follows. 

In the problems on the stability of motion of liquid-filled bodies, we 

are interested chiefly in the question of the stability of motion of the 

solid body; the question of the stability of motion of the liquid is of 

interest to us only in so far as the motion of the liquid exerts an effect 

on the stability of motion of the body as a whole (it is of course obvious 

that these two aspects of the problem are interconnected). In this con- 

nection it is natural to put the question of the stability of the motion 

of our system relative to all the variables which characterize the motion 

of the solid body and the motion of the liquid. In such a setting the 

problem of the stability of motion of the solid body, and of the liquid 

contained in its interior, leads to the investigation of the conditional 

stability of the system, that is, the stability relative to certain ones 
of the variables. and not to all of them that determine the motion of the 
mechanical system with an infinite number of variables. This problem is 
solved in this paper with the aid of Liapunov’s second method and by 

starting out with the complete equations of the perturbed motion. 
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1. Equations of the perturbed motion of the system. Let us 
suppose that the central ellipsoid of inertia of the solid body is an 

ellipsoid of revolution, and that the completely or partially filled 

cavity of the body has the form of a solid of revolution. 'Ihe liquid is 

assumed to be an ideal one. The center of inertia of the system will be 

taken as the origin of the system of coordinates, O1xlylzl, whose axes 

will have fixed directions in space. 'lhe equations of motion will be re- 

ferred to a system of coordinates, Oxyz, which is fixed with respect to 

the body, and whose origin 0 coincides with the center of inertia of the 

body, while the axes are directed along the principal axes of inertia of 

the body. Let the axis of rotation of the cavity coincide with the axis 

of rotation of the ellipsoid of inertia of the body; we take this axis 

to be the Oz-axis. 

We shall consider the case when the equations of motion of the system 

relative to the center of inertia [2 1 can be written in the form [9 1 

A $ + -g + (A - C) 6J36J1 i_ fiJ,pl- f%g, = - q1 

c d2 + -g $- o,g, - 6kgl = 0 

VI $ 6J2z - 03y) + 6Jg (w $- a3 -_i- ‘“17j - 6J$L) - 

- 6J3(2’ + 2.‘2 _t 6JQrC - 6)lZ) I= - ; 2 

$ (2: j-- vz + 6J3J; - 6J1Z) -f 6J3 (u _t- U1 + 6JTZ - 6J3y) - 

- 6J1 (20 + ~‘3_~6J1y-6J~) _- --LAY 

p O’Y 

-& (w i- v,*- 6J1y - 032) -j- W] (v $ 2”s + 035 - QpZ) - 

- w2 (U + VI $- 6J2Z - O,y) = - $ ?$- 

i?U 
_J_?.Ldw-() 

-K ' ay ’ az - 

(1 *I) 

(1.2) 

(1.3) 

d7l _ 42 d-r3 -_ 
dt @J,~,---J2~39 dt = 6JlT3 - 03r1, - = O,~l-- 0172 (1.4) 

dt 

Here A = B, C denote the principal central moments of inertia of the 

body, a is a constant which characterizes the moment of the tilting 

couple; yl, y2 and y3 are direction cosines of the axis of the fixed 

direction O1zl, relative to the axes x, y and z of the moving system of 

coordinates; o w2, G.J? are the projections on the axes x, y, z of the 

vector of the kstantaneous angular velocity of the body, g,, g2, g3 are 
the projections on the x, y and z axes of the vector of the moment of 

momentum of the liquid in its motion relative to the system of coordinates 
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OXIYIZli “1’ “2, “3 are the projections on the x, y and z axes of the 

vector of the velocity of the center of inertia 0 of the body in its 
motion relative to the inertia 0, of the system; u, v and w are the pro- 

jections of the vector of the velocity of the particles of the liquid 

relative to the solid body in its motion relative to the system of co- 

ordinates O1xlylzl; p is the density of the liquid, p is the pressure. 

It is not difficult to see [9 I that the equations of motion (1.1) to 

(1.4) of the system possess the following first integrals: 

Tl+ T,+ ~73 = h, (AW + &)rl+ (A% + &)rz+ (co,+ $?3)r3 = k 

(1.5) 

where T, stands for the kinetic energy of the body, T, is the kinetic 

energy of the liquid, u = uyO is the potential energy of the external 

forces acting on the system, h, k and 01' are constants of integration. 

It is easily seen that the equations (1.1) to (1.4) have the following 

particular solution: 

or= 02 = 0, WQ = (0, Gl = v2 zz 7J3 zz 0 

g1 = g, = 0, s3 = g, r1= rz = 0, 73 = 1 
(1.6) 

which corresponds to the uniform rotation of the solid body around the 

Oz-axis, which here is parallel to the axis O1zl, while the motion of 

the liquid is stabilized and the liquid, in particular, can be (under 

certain conditions) in the state of relative equilibrium 

u=vzw=() g = op\ (2" + y") dr 

70 

(1.7) 

or may be at rest relative to the system O1xlylzl: 

u=eVY, v=-arr, w = 0, g=o (1.8) 

(for example, in the case of the vortexless motion of the liquid 11 1 ). 
Here r denotes the region of the space xyz occupied by the liquid at the 

given moment, and r. stands for the region r in the unperturbed motion. 

Ihe motion of the system described by the particular solution (1.6) 

will be taken as the non-perturbed motion of the body and of the liquid 

within the cavity. We shall investigate the stability of this motion. 

Equation (1.1) shows that the motion of a solid body depends on the 

kinetic moment of the liquid and on its rate of change which, in turn, 

depends on the motion of the body. In this connection it is natural to 

investigate the stability of motion of our system relative to the pro- 

jections ol, 02, a3 of the instantaneous angular velocity of the body, 
and relative to the projections g,, g,, g3 of kinetic moment of the liquid 
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upon the fixed axes, and also relative to certain parameters which 

characterize the position of the body in space. Such parameters can be, 

for example, the Euler angles, of the Kryfov angles; below we select for 

such parameters the direction cosines yI, y2, yj of the O1zl-axis rela- 

tive to the x, y, z-axes. These parameters are chosen as quantities which 

directly characterize the tilting moment that acts on the system. We note 

that the kinetic moment of the liquid determines as an integral (but not 

completely) the motion of the liquid. From this it follows that the 

stability of motion of the liquid relative to the projection (upon the 

moving axes) of the kinetic moment of the liquid is a conditional stabil- 

ity, that is, a stability of the motion of the liquid relative to some 

but not to all of the variables which characterize the motion. 

Thus, we shall study the stability, in the sense of Liapunov, of the 

rotational motions of the body and liTid relative to the variables 

WY, 02, w3, 65, 65, 93, Tit r29 73, VI, pzr % v l 9> 

which for the nonpereurLed motion take on the given constant values (l,h). 

In this manner we have reduced the problem of the stability of motion 

of the considered system with an infinite number of degrees of freedom to 

the investigation of the stability of the system relative to a finite 

number of quantities (1.9). 

Let us construct the equations of the perturbed motions of the systems 

which will be applicable to the case when the perturbed motion is a uni- 

form rotation of the body and liquid as one solid body. For the case when 

the unperturbed motion of the liquid is the state of rest, one needs only 

to set g = 0 in the results. If for the-perturbed motion we set 

03 =w+E, F3 = g--!- ri, pl=i+c (1.10) 

and substitute (1.10) into the equations (1.1) to (1.41, we obtain the 
following equations for the perturbed motion of the system: 
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dn ~=wl(1+6)--(w+5h1 d&(ll -(w+~)y2-Q2(1+t), 

dl; 
yjj- = w2~l---lrz (1.13) 

where 

gl=P [Y(~+~,+w,y--2~)--(~+~2+(~+5)2--W,z)ld5 
5 

(1.14) 

T 

&=p [z(U+D1+ozz-((o+4)y)--((w+v,+6~,y--oa)]clr 
s 
5 

? =p l~(~+~z+(~+E)z--~Z)-~((u+v~+w~z-(w+5)~)Id?- 
s 
T 

-wp 
s 
(z2 + y") dr 

70 

If the cavity has the shape of a body of revolution and if A = B, then, 

as is shown in the work [9 1, there exists the integral 

and hence, during 

It is possible 

(1.11) to (1.13). 

w3 = w3’ = const 

the entire course of motion, 

t=w;- w = const (1.15) 

to establish three more integrals for the equations 

Let us multiply equations (1.11) by wl, w2, 03, respectively, and add 

the results; let us multiply equation (1.12) by u, II, w, respectively and 

add them. We multiply the result by p dr and integrate over the total 
volume T occupied by the liquid, and then we add this result to theequation 

obtained earlier. In consequence of this we will have an equation from 
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which we obtain directly the following integral 

$M(v 12 -+ 212’ $ Us’) + $ ( h12 j- h2’ )- 2c6g -+ a’) $ 

+fp\(a2+V 2 + w2)d5 -I- -+p 
s 

{[02z - (Q -;- E)y12 $ /(co + Qcc-OJ,Z]” i- 

+ (oly7-02z)2) dT + p \ {u [vl-t- :;,,z - (0 + E) y] $- v Iv,+ ((0 -t- t) 5 - qz] + 

+ w (va+ WI?/ - @2X)> :T -t p S{Vl fw - ((0 + 5) YI + v2 r(@ + E) z - WI + 

+ v3 (4 - 02z )} dT $ UC = const (1.16) 

Here M = M, + M, is the mass of the system. 'lhis integral can be re- 

presented, in view of (1.14), in the following form 

f M (v12 -+- v22 + v32) + ; [.461,2 + ho,2 + 2&i + cg"] $- 

+ (w-i-- v3) (oly--0,~)) ds + p ~(uvl+vv2+wv3)dt+ a% = const 

Let us multiply (1.11) by yl, y2, 1 + [, respectively, and add the 

results. We thus find another integral 
(1.18) 

(~~1+~1)~1+(~~2+g2)r2JyC~$rl+~C(~+E)+g+~l5=c~nst 

If we multiply the equation (1.13) by yl, y2, 1+ 5, respectively, and 

itemize by parts, we shall then find a further integral 

rrs + r22 + ts+ 2C = 0 (1.19) 

In the investigation of the stability of the unperturbed motion we 

shall consider the perturbed motions in the general form without restrict- 

ing them in any way. 

2. Certain conditions of stability. The mechanical system under 

consideration is a conservative one, therefore it cannot be asymptotically 

stable. Indeed, it follows from Chetaev's theorem [lo I that to every 

characteristic number different from zero there corresponds a negative 

characteristic number; the perturbed motion of the system will thus be 

unstable. Hence, the unperturbed motion of the system can be stable only 
in the case when all the characteristic numbers of the system are zero, 

i.e. only in the case that is critical in the sense of Liapunov, when the 
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first approximation does not suffice to draw conclusions about the 

stability of motion. 

In our problem, however, the integrals (1.15) to (l.19), as well as 

their linear combinations are not of definite sign relative to the vari- 

ations of the variables (1.9). In order to bypass this difficulty, we 

make use of the following inequality established by Liapunov [6 1, which 
in our notation has the form: 

glz + gz2 + gs2 < 2T2S 
Here S denotes a quantity which is proportional to 

principal moments of inertia (for the point 0) of the 

arbitrary instant of time. 

(2.1) 
the largest of the 

liquid at any 

Taking into account the notation (l.lO), the inequality (2.1) for the 

perturbed motion of the liquid can be rewritten in the following form: 

e2 + ~~22 + k + d2 < 2T2S (2.2) 
where T2 stands for the kinetic energy of the liquid in the perturbed 
motion, while g,, g, and n are determined by the formulas (1.14). 

let us introduce into our consideration the function 

H, = -; LAWI + AW22 + C(0 + Q2] $- &9,2 + &2 + (6 + 'i)"] + 

+ $M1(%2 + US2 + Q2) -t- a(1 + 5) (2.3) 

Turning our attention to the inequality (2.2), we can convince our- 

selves that, for the consideration of the perturbed motion of the system, 

we have the following inequality: 

H,<H, H=T+-U-h (2.4) 

Here H denotes the total mechanical energy of the system during its 
perturbed motion. 

Making use of the function H, and of the integrals (l.lS), (1.18) and 

(1.191, we construct, by means of a linear combination of these functions, 

a new function V that is of definite sign. 

In view of the inequality (2.4), the function V will be bounded from 
above and the conditions of its positive definiteness yield (in accord- 

ance with Liapunov's theorem on stability) sufficient conditions for the 

stability of the rotational motions of the solid body and of the liquid 

contained in the cavity. In this manner the function V serves to solve 
the problem on the stability within that bounded region of the space of 

variables ol, w2, 5, g,, g2# 7, yI1 yzj C, vl, v2’ v 3, where the equation 
V= 0 yield a system of closed bounded surfaces. 
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Let us now construct the function V. 

From the integrals (1.18) and (1.19) we find 

(2.5) 

p. =const-((AU, -;- g,)7, -((A% + 6n) 72-CE-CCfi) + w-gc-7-/c 

i = - +(712 + 722 + C2) (2.6) 

Substituting for n and < in the expression (2.3) their values given 

by the formulas (2.5) and (2.ri), dropping the unessential constants, and 

adding the terms t'C(C - A)/2A and C(g/S - o )4, we obtain the function 

V = -+ n (q2 -I. 023) +- _& (grl? -;- g,2 + qJ)_ 

- + [(AU I-+ 61)71 + (2402 i- &??)7, f CET + $1 A- (2.7) 

f -g 52 + + (Cto -$ f $-a) (yl” y22 -j 1;2) + ; M, (VI2 + ?I22 + 7Y32) 

which can be rewritten in the form 

V = TV, + la', -;- II';: -; $ X,(V,! !- V22 + V,?") 

Here we have introduced the following notations: 
(2.8) 

2w, ((01, gl? 71 ) = Ao,2- 2+0,, - Cl) Tl -I- -& -(- p+ + $-a> r12 

and the function W2(02, g,, yz) is similar to 

Ihe discriminants of the quadratic forms W, 

plicitly as 

I 
A 0 

i 
0 

g 
T -3 I I 0 

A 

I I 

c 
-- 

Sg 
-+ (cw+g,+ -3-g 

the function I,( ol, gl,yl). 

and W, can be written ex- 

In accordance with the criterion of Sylvester a quadratic form is 

positive-definite if and only if all of the principal diagonal minors of 

its discriminant are positive. In consequence of this we obtain the 
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following condition for the positive definiteness of the functions W,, 

W2 and W3: 

( 
Go-+-g g-aaS>O. 

> (2.9) 

-lhE., if the condition (2.9) is fulfilled then the function V is 
positive-definite relative to the variables oI, I+,, 6, g,, g,, 7, yl, y2, 

* 6, VI' V2' "3' the function V is bounded from above. Hence, in accordance 
with Liapunov's theorem, the relation (2.9) is a sufficient condition for 

the stability of the rotational motion of a liquid-filled solid body in 

terms of the quantities (1.9). 

The positive-definite function V can also be constructed in a diffe- 
rent way ilO 1. Let us multiply the function (2.3) by Co, the integral 

(1.19) by 2a, and add the results. After this we replace 5 by its value 

as given in (2.6) and add the terms 

C(2a- Cw")i, 
C"o(C-/IA) 

2A P. 
(2.10) 

We thus obtain, up to within some constants, the following expression 
for V 

V+t (012+ o,'>-t cgp + $(g,? + g,* + q-) - 

-2a[(Aw, -k gl)rl$ (Au, -I- pz)y3 +- (CE + $Ll -'F 

-I- ($ f- gjn($ + r2* $- q + $ CoX,(a,'f 2.?? -;- Z?,')_t g ‘g- 2J .q 
/ /' 

or 

V=W,-j- TV, '- TV, + EM&,* + T2C -+ Vy') + (G s"--- G)-r, 

where we have made use of the following notation (2.11) 

AC0.l 
1J’, (01, g1, 71) = F WI2 -22a(Ao, -I 001) 71 t- gg1r _t ($ + g)lql? 

TV,(;. yi, O)= ~Z2-2a(CE+~)~+ G7,2+(F + g)) ais 

The function W,( 0 2, g2,y2) is analogous to W,(w,, gI, yl). Writing down 
explicitly the discriminants of the quadratic forms W, and W3 

- An - il 

in accordance with Sylvester's criterion we obtain the following condi- 

tions for the positive definiteness of the forms W,, W2, W 3 
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C?&! +2&q-4(A+S)a>O 

If during the entire course of motion 

(2.12) 

(2.13) 

then, under condition (2.121, the function V will be positive-definite 
and bounded from above in view of the inequality (2.4). By Liapunov's 

theorem, the conditions (2.12) and (2.13) will then be sufficient condi- 

tions, relative to the quantities (1.9), of a hollow solid body contain- 
ing a liquid. 

It should be noted that in the absence of the liquid within the hollow 

of the body (when one has to suppose that g = 0, S = 0, g, = g, = n = 01, 

the condition (2.12) goes over into the well known condition of Maievskii 

for the stability of projectiles 

As an example let us consider the case of the potential of the motion 

of a liquid completely filling a cavity shaped like a body of revolution. 

As is known [l I, the uniform rotation of the body around the Oz-axis of 

the cavity does not give rise to any motion of an ideal liquid that is 

at rest, and g = 0. In the perturbed motion, the velocities of the 

particles of the liquid are determined by the potential 4(x, y, Z, t) of 

the velocities, where 

and one can easily see that 

because along the walls of the cavity u the following condition holds 

5112 - y" :=- 0 

where m and n denote the direction cosines of the exterior normal to the 

surface u. Hence, in this case the condition (2.13) is satisfied while 

condition (2.12) takes on the following form 

[;'o?__4(A _i_S)a > (j (2.14) 

When this condition is fulfilled, the rotational motion of a solid 
body with a liquid content will be stable. 

We note that a stability condition of the type (2.14), valid for all 

bodies containing a liquid with vortexless motion, was first obtained by 
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Chetaev 12 1 when he was considering the stability of an equivalent solid 

body; in that case the quantity S represented the equatorial moment of 

inertia of the equivalent solid body. 

In conclusion we emphasize once more that the stability of the rota- 

tional motion of a solid body with liquid content under the action of a 

tilting moment is attained by means of gyroscopic stabilization, and that 

the latter. as was shown by Kelvin, cannot occur when the system is acted 

upon by a dissipative force with a loss of energy under arbitrary dis- 

placements of the system. Since in real situations there always exist 

small dissipative forces, the gyroscopic stability will always be des- 

troyed. In view of this, Kelvin suggested that a distinction should be 

made between ntemporary” stability, which can be achieved with gyroscopic 

stabilization. and “secular” (or permanent) stability which exists under 

the action of potential forces only. It is obvious that the stability 

within our system has the character of the ‘temporary” stability, and 

that our system is unstable in the “secular” sense. Chetaev [ 10 I 

succeeded in proving a theorem on the instability of the motion of a 

solid body by taking into account dissipative forces. It seems that this 

theorem is also valid for the rotational motion of a solid with a cavity 

containing a liquid. 
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